
Design choices and strategies for implementing
WS-BusinessActivity specification. ∗

Simon Zambrovski
Technical University
Hamburg-Harburg

Schwarzenbergstrasse 95
21073 Hamburg, Germany

simon@zambrovski.org

Boris Gruschko
Technical University
Hamburg-Harburg

Schwarzenbergstrasse 95
21073 Hamburg, Germany

boris@gruschko.org

Muhammad F. Kaleem
Technical University
Hamburg-Harburg

Schwarzenbergstrasse 95
21073 Hamburg, Germany

m.kaleem@tu-harburg.de

ABSTRACT
This paper describes an implementation of the Web Services
Business Activity Framework (WS-BusinessActivity), which
is an industry specification aimed at providing coordination
protocols for coordinating long-running transactional activi-
ties in a Web Services environment. This specification itself
leverages the extensible coordination framework described
in the Web Services Coordination specification. These spec-
ifications provide a general overview of the frameworks and
define the requisite interfaces, however no design and im-
plementation issues are described in them. In this paper we
introduce some concepts and strategies for implementing the
frameworks described in these specifications, and focus es-
pecially on the WS-BusinessActivity specification. We also
focus on how existing Web Services may leverage the trans-
actional functionalities offered by these frameworks without
requiring any change to their existing interfaces. We de-
scribe the design of our implementation and highlight the
strategic choices we made, specially about aspects not ex-
plicit in the WS-BusinessActivity specification.

Categories and Subject Descriptors
H.3.4 [Information storage and retrieval]: Systems and
Software—Distributed systems; H.3.5 [Information stor-
age and retrieval]: On-line Information Services—Web-
based services

Keywords
Distributed transaction systems, WS-BusinessActivity, dis-
tributed transactions, Web Services

∗A full version of this paper is available in ger-
man as a report Entwurfskonzepte und Implemen-
tierungsstrategien für das WS-BusinessActivity Frame-
works at http://jwst.sf.net/resources/publications/wsba-
report.pdf

ICSOC04 2004, 2nd International Conference on Service Oriented Comput-
ing, New York City, NY USA

1. INTRODUCTION
Support for transactions is an important property of dis-
tributed systems. Traditional transactional models usually
involve an entity such as a transaction manager (or a co-
ordinator) having strict control over the transaction partic-
ipants. Such a model is not directly applicable to a Web
Services environment, which consists of autonomous ser-
vices spread over the internet. Service providers cannot
be expected to open up their services to direct control or
management by external entities. However, it may be de-
sirable to have autonomous Web Services cooperate within
the scope of a transaction. For such situations, extended
transactional models have been designed that cater to re-
quirements of a Web Services environment. One such model
consists of the Web Services Coordination (WS-C)[1] and
Web Services BusinessActivity (WS-BA)[2] specifications.
The WS-C specification defines a coordination framework
for Web Services, and the WS-BA specification leverages
this coordination framework to define coordination proto-
cols suitable for coordinating long-running activites based
on Web Services interactions.

1.1 The specifications
WS-C Specification implies three roles for the communica-
tion parties. The Initiator is an entity interested in a coor-
dinated interaction with multiple Web Services. Typically
it would be a client application invoking different Web Ser-
vices in the scope of an activity. The Participant is an entity
offering some business service that needs to be coordinated
during the interaction. The Coordinator is an entity coor-
dinating the interaction. It also offers an Activation Service
and a Registration Service. This is represented in Figure
1. The message flow between the different entities is as
follows. Prior to the begin of the communication the Initia-
tor retrieves a Coordination Context from the Coordinator’s
Activation Service. The Coordination Context is a logical
abstraction identificating the data exchange for a particu-
lar activity. The Coordination Context Identifier uniquely
identifies a Coordination Context. The Initiator begins its
communication with Participants by propagating the Coor-
dination Context within the business messages. The receiv-
ing of a message containing the Coordination Context by the
Participant allows the assignement of the message to partic-
ular coordinated activity. If such message is received for the
first time, the Participant registers itself for the coordinated
activity by the Coordinator’s Registration Service. During



this registration the Coordination Protocol is negotiated and
the addresses of corresponding Coordination Protocol End-
point are exchanged.
Different coordination scenarios have different coordination
requirements. This need is reflected in the WS-C specifica-
tion by support of pluggable coordination protocols. WS-
BA specification defines coordination protocols for long-running
transactions, and names such a transactional activity as
Business Activity(BA). A Business Activity can be parti-
tioned in scopes. For simplicity we omit the support of
scopes in this paper, because this feature is only relevant
for the Coordinator’s internal logic and can be seamlessly
integrated into the implementation on demand.

1.2 The coordination protocols
WS-BusinessActivity specification defines two coordination
protocols. These are Business Activity With Coordinator
Completion (BACC) protocol and Business Activity With
Participant Completion (BAPC) protocol. These protocols
allow the Coordinator to transmit some coordination infor-
mation to the Participants. BACC and BAPC are two-phase
protocols, but differ from classic two-phase-commit proto-
col[7] in the following manner. During the first phase some
business data is exchanged. The end of the first phase is
marked with completed-message from the Participant, which
indicates that all data handled by the Participant is stored
persistently. The second phase is used for confirmation or
negotiation of results achieved during the first phase.
The BAPC protocol should be used for activities in which
the Participant can make a decision about the transition
from the first to the second phase. The BACC protocol
should be used for activities, in which this decision is made
by the Coordinator.

2. SPECIFICATION ANALYSIS
In this section we analyze the design and architectural re-
quirements of the WS-C and WS-BA frameworks, in search
of constraints for the system to be built. We also highlight
some ambigous areas of these specifications and provide con-
crete suggestions for them.

2.1 Inititation and Termination
WS-Coordination defines a message flow that should be un-
derstood by all communicating parties. To allow stepless

ParticipantCoordinator

createCoordinationContext()

register()

App2

Activation
Service

Registration
Service

App1

(Initiator) (Web Service)

Figure 1: System overview(Specification)

integration of WS-Coordination framework within existing
Web Services and thier clients we introduce mechanisms for
activation and deactivation of WS-Coordination support on
demand. For this purpose we introduce a new role into the
interaction model and name it Transactor. The two opera-
tions offered by Transactor are important for the initiatia-
tion and termination of transactional communication. The
begin message activates the support and the end message
deactivates it.

2.2 Registration
The WS-C specification prescribes the Participant to reg-
ister with the Coordinator if it intends to participate in a
business activity. The register message does not contain
enough information for the Coordinator to determine which
business activity the Participant wants to take part in. It is
possible to resolve this lack of information in several ways.
The Coordinator could provide distinct Registration Service
endpoints for each BA. We chose another approach and ex-
tended the register message by the missing information. We
also provide the address of the business endpoint in the reg-
ister message. Due to the possibility of a participant taking
part in several BAs simultaneously, our extension of the reg-
ister response message provides identification information
for the Participant to assign it to the corresponding BA.
The Coordination Context Identifier has been used as the
extension for both messages. An example register message
with the identifier is shown in listing 1.

. . .
<wscoo r :Reg i s t e r xmlns:wscoor=” . . . ”

xmlns:wsa=” . . . ” xmlns:wsu=” . . . ”>
<ws c o o r : P r o t o c o l I d e n t i f i e r>

ht tp : // schemas . xmlsoap . org /ws/2004/01/
wsba/BusinessAgreementWith
Part ic ipantComplet ion

</ w s c o o r : P r o t o c o l I d e n t i f i e r>
<wscoor :Requeste rRe fe rence>

<wsa:Address>
ht tp : // example . org / Reg i s t rat ionReq

</wsa:Address>
</ wscoor :Requeste rRe fe rence>
<wscoo r :Pa r t i c i p an tPro t o co l S e r v i c e>

<wsa:Address>
ht tp : // example . org /BAPCProt

</wsa:Address>
</ ws coo r :Pa r t i c i p an tPro t o co l S e r v i c e>

<wsu : I d e n t i f i e r>
ht tp : // example . org /? i d e n t i f i e r=1

</ w s u : I d e n t i f i e r>
<wsa:EndpointReference>

<wsa:Address>ht tp : // example . org /
Bus inessPort</wsa:Address>

</wsa:EndpointReference>
</ wscoo r :Reg i s t e r>
. . .

Listing 1: Register Message

2.3 Delivery of decisions
Both WS-BusinessActivity protocols contain the completed
protocol state. In this state the protocol logic on the Par-
ticipant side has recorded all business data and expects a
decision from the Coordinator about further protocol pro-
gression. There are two possibilities: the compensate mes-
sage serves to undo the work of the participant, the close



message confirms the performed work.
In general the coordinator has no ability to understand the
semantics of the business messages being exchanged between
the client and the Web Service. Particularly it has no knowl-
edge about the business process flow. This knowledge is only
available on the client side. This means it cannot decide by
itself which message to send to the Participant.
For this purpose we extend the Transactor service by intro-
ducing the ability to transmit a decision of the client. This
decision is business flow dependent and enables the Coor-
dinator to send the appropriate message to the Participant.
Message containing this decision also includes the Business
Endpoint Address of the Web Service to associate the deci-
sion with a particular Web Service.

2.4 Coordination protocols extension
Both the Coordinator and the Participant can hold several
coordination protocol instances simultaneously. The WS-
BA specification does not provide enough information to
differentiate between coordination protocol instances. Simi-
lar to the case of register and register response messages we
include the identification element in the messages to allow
the receiving party unique assignment between the coordi-
nation messages and corresponding protocol instances.

3. USED MODELS
The WS-C and WS-BA specifications combined with exten-
sion we described in the previous section define four differ-
ent entities communicating with each other. The important
aspect of our implementation strategies are the interfaces
between the existing communication parties and the intro-
duced entities. In this section we introduce some conceptual
models for development and integration of the components.
In doing so, we focus on achieving maximum loose-coupling
of components.

Proxy

Service

ParticipantCoordinator

createCoordinationCtx()

register()

Activation

Service

Registration

Service

Transaction

Service

Proxy

Client
Transactor

Decision

Engine

App2App1

(Initiator)

(Web Service)

Middleware

Figure 2: System overview(Implementation)

3.1 Message interception
The basic mechanism for extension of messages defined in
SOAP[4] is support of headers. It allows to provide addi-
tional metadata within a message. This extension point is
used in message flow defined by WS-C by putting coordina-
tion context in each message exchanged between the client
and the Web Service. This mechanism becomes more effi-

cient if communicating parties do not need to handle head-
ers. For this purpose we introduce a Message Interceptor.
Message Interceptor is a software component, that is specific
to the Web Service Toolkit vendor. It is based on Intercep-
tor J2EE Design Pattern. The goal of this component is
to read the coordination SOAP-headers from incoming mes-
sages and to write coordination SOAP-headers to the outgo-
ing messages. The usage of Message Interceptor simplifies
the structure of the communicating parties and separates
the transaction system from the business service.

3.2 Proxy
The description of WS-C and WS-BA frameworks in [3] is
based on the assumption, that the Initiator is tightly cou-
pled with Coordinator or acts as as the Coordinator itself.
Furthermore, the Initiator is the client application that ac-
cesses the Web Service. This assumption certainly holds for
analysis of coordinated communication but leads to depen-
dency between the business and transaction systems during
the implementation. To minimize this dependency we intro-
duce a Proxy System. Its main idea is to route the business
message flow between the client and the Web Service to the
Middleware system as shown in Figure 2. The relocation of
Initiator and Coordinator entities to this Middleware is then
possible. The Proxy System consists of two parts a Proxy
Client and a Proxy Service.

3.2.1 Proxy Client
A Proxy Client is a Message Interceptor deployed on the
message path in the client application. It is inactive until
the client sends the begin message to the Transactor. If
active, the Proxy Client sends all intercepted messages to
the Proxy Service. The deactivation of the Proxy Client is
triggered on the receipt of end response message from the
Transactor.

3.2.2 Proxy Service
The Proxy Service is a Web Service tightly coupled with
Transactor, using a Message Interceptor installed on its mes-
sage path. The main task of Proxy Service is to reroute the
messages to their destinations aimed at client application.
The response messages received from the Web Services are
then rerouted to the client. All messages exchanged between
the Proxy System components contain the Proxy-SOAP-
Header as shown in listing 2, which identifies the Proxy
Connection.

. . .
<soapenv:Header>

<prx :ProxyReference xmlns:prx=” . . . ”
xmlns:wsa=” . . . ”>
<prx :EndpointReference>

<wsa:Address>
ht tp : // example . org / s e r v i c e s /

ProxyServ ice
</wsa:Address>

</ prx :EndpointReference>
<prx:ProxyID>17</prx:ProxyID>

</ prx :ProxyReference>
</ soapenv:Header>
. . .

Listing 2: Proxy Response Header



3.3 Decision engine
Similar to the dependency between the client and the Coor-
dinator and Initiator the dependency between the business
Web Service and Participant is assumed in [3].

There are several approaches for a Web Service to inform
the Participant, or for the Participant to inform the Web
Service about the changes of their respective internal states.
The Web Service could offer an additional API to support
a mutual exchange of internal state information with the
Participant. The drawback of this approach is the changes
required in the Web Service’s API. We propose another ap-
proach to resolve the dependency between the Web Service
and the Participant. Our approach is based solely on the
observation of the in- and outbound communication of the
Web Service. A Message Interceptor is installed on the path
of the in- and outbound messages of the Web Service. The
intercepted messages are written into a Trace[8] data struc-
ture. An example of a Trace is given in listing 3. Upon

<trace :TraceType xmlns : t race=” . . . ”>
<t race :Message>

<soapenv:Envelope
xmlns:soapenv=” . . . ”>
. . .

</ soapenv:Envelope>
<t r a c e : o p e r a t i o n />
<t r a c e : t o>Cl i en t</ t r a c e : t o>

</ t race :Message>
</ trace :TraceType>

Listing 3: Trace

arrival of a Message a Decision Engine software component
is triggered. The Decision Engine determines if the Web
Service state transition has occurred. To allow such conclu-
sions the Decision Engine is preconfigured with a Web Ser-
vice specific Rule Set. The Rule Set consists of XQuery[9]
predicates which will be evaluated on the Trace. The result
of the evaluation enables the Decision Engine to conclude
the occurrence of a change in the Web Service’s internal
state. The RuleSet provides a mapping between the inter-
nal state of the Web Service and the changes of the state
of the Coordination Protocol in Participant. As soon as
the Coordination Protocol Instance on the Participant side
reaches the completed state, it waits for decision from Co-
ordinator side about further protocol progression. As de-
scribed above the usage of Transactor allows the transmis-
sion of this decision from client to Coordinator, which re-
transmits it to the Participant. Using the Decision Engine
with another pre-configured set of expressions it is possible
to construct a SOAP-message for sending to business Web
Service. This SOAP-message contains the decision of the
client transformed into the corresponding message from the
business domain of Web Service.

The discussion of the applicability of the proposed approach
and the RuleSet is beyond the scope of this paper and is a
subject of further research.

The concept of Decision Engine minimizes the effort needed
to adapt an existing business Web Service for usage with
WS-BA to writing of a configuration file containing the map-
pings between the coordination and business expressions. A

Client Middleware Participant

begin()

book()

book()

register()

registerResponse()

bookResponse()
bookResponse()

cancel()
compensate()

completed()

compensated()

end()

Business 

Web 

Service

book()

bookResponse()

cancelBook()

cancelBookResponse()

Message 
generated 

by Decision 
Engine

Message 
containing

Coordination 
Context

cancel() 
containing 
business 
endpoint 
address

Business 
messages 

Figure 3: Sample interaction scenario

complete example interaction depicting the components de-
scribed previously is shown in figure 3.

4. IMPLEMENTATION DETAILS
In the previous section we introduced design concepts needed
for the implementation. In the following section we give
some details about our implementation.

4.1 Implementation platform
The WS-BA Framework has been implemented in Java, us-
ing J2SDK 1.4 from Sun Microsystems. On the server side
we used JBoss Application Server 3.2.3 as J2EE Web Con-
tainer and JBoss JMS and JBoss JMX. For the Web Services
used in the framework Apache AXIS 1.2 has been used as a
Web Service toolkit. It has been rebuilt with Castor 0.9 to
allow better serializer/deserializer support. A sample travel
agency scenario has been developed in order to validate the
functionality of our implementation. The scenario imple-
mentation uses JBoss J2EE EJB container with MySQL 4.0
as data storage.

4.2 Web Service implementation
Web Services introduced in the previous section has been
implemented using Apache AXIS. The XML Schema doc-
uments used in WS-C and WS-BA specifications has been
mapped to corresponding Java objects with Castor[6]. As
described in subsection 3.1 some Web Services use Message
Interceptors installed on the message path. Those Mes-
sage Interceptors has been implemented as AXIS handler.
The configuration of the different message interceptors has
been performed using standard parameter bag supported by
AXIS deployment descriptors.



4.3 Decision Engine Implementation
The execution of the decision engine predicates on the Web
Service Traces has been implemented using the Saxon XQuery
Processor. For performance reasons the recording of the
Message Trace has decoupled from the message flow via a
JMS Queue.

4.4 Monitoring
We implemented a JMX interface for our implementation
to enable the external monitoring of system’s internal state.
The exposed information contains the Coordination Proto-
col states of the Coordination Protocol Instances. To vi-

Figure 4: Monitoring Client

sualize the changes of the Coordination Protocol states we
developed a graphical JMX client which is depicted in Fig-
ure 4.

5. CONCLUSION
The proposed approach separates the business from the trans-
action handling Web Services. This separation is enabled by
the Message Interceptor installed on the message path. On
the client side the Message Interceptor allows placement of
the Initiator in the Middleware. This simplifies the imple-
mentation of the client. The Proxy System approach defines
a scope on messages being exchanged during the transac-
tional communication. The messages demarcated by this
scope will be delivered to the Middleware and then rerouted
to the business Web Service. The Coordination Context is
assigned by the Middleware to each message which has been
sent in the scope of a transactional communication. The us-
age of Transactor enables the placement of the Coordinator
in the Middleware. The Decision Engine allows an exter-
nal determination of the internal state of the Web Service.
This capability allows retention of the interface of a Web
Service, while enabling it’s participation in a Business Ac-
tivity. In order to allow further evaluation in educational
and research domain we published our implementation on
the SourceForge website. It can be reached via it’s project
site at http://sf.net/projects/jwst/.

6. REFERENCES
[1] L. F. Cabrera, G. Copeland, W. Cox, M. Feingold,

T. Freund, J. Johnson, C. Kaler, J. Klein,
D. Langworthy, A. Nadalin, D. Orchard, I. Robinson,
J. Shewchuk, T. Storey, and S. Thatte. Web Services
Coordination Framework (WS-Coordination),
September 2003.

[2] L. F. Cabrera, G. Copeland, W. Cox, T. Freund,
J. Klein, D. Langworthy, I. Robinson, T. Storey, and
S. Thatte. Web Services Business Activity Framework
(WS-BusinessActivity), Januar 2004.

[3] L. F. Cabrera, G. Copeland, J. Johnson, and
D. Langworthy. Coordinating Web Services Activities
with WS-Coordination, WS-AtomicTransaction, and
WS-BusinessActivity, 2004.

[4] R. Chinnici, M. Gudgin, J.-J. Moreau, and
S. Weerawarana. SOAP Services Description Language
(WSDL) 1.2, Mar. 2003. status : W3C Working
Draft , http://www.w3.org/TR/wsdl12/.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Massachusetts, 1994.

[6] K. Gibbs, B. D. Goodman, and E. Torres. Create Web
services using Apache Axis and Castor. Available at
http://www-
106.ibm.com/developerworks/webservices/library/ws-
castor/,
2003.

[7] J. Gray and A. Reuter. Transaction Processing. Morgan
Kaufmann Publishers, San Mateo (CA), USA, 1993.

[8] M. Venzke. Specifications using XQuery Expressions on
Traces. Mario Bravetti, Gianluigi Zavattaro (Eds.):
Proceedings of the First International Workshop on
Web Services and Formal Methods, February 2004.

[9] W3C. XQuery: the W3C query language for XML –
W3C working draft. Available at
http://www.w3.org/TR/xquery/, 2001.


